

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 264-269 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209264269 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 264

Context Switching On High Priority Process

Srinithi B, SnehaM, Harshith S, Dr.M. Sujithra M.C.A, M.Phil.,

PhD,Dr.A.D. Chitra M.C.A, M.Phil., PhD,
2

nd
 Year, M.Sc. Software Systems (Integrated), Coimbatore Institute of Technology,Coimbatore .

Assistant Professor, AssistantProfessor, Department of Data Science,Department of Software Systems,

Coimbatore Institute of Technology,Coimbatore Institute of Technology,Coimbatore Coimbatore

--

Date of Submission: 10-11-2020 Date of Acceptance: 24-11-2020

--

ABSTRACT: Time is needed to spare the setting

of one process that is in the running state and

afterward getting the setting of another process that

is going to come in the running state . during that

time there is no valuable work done by the CPU

from the client point of view . thus , setting

exchanging is unadulterated overhead in this

condition . time taken for changing from one

process to other is unadulterated over head . since

the framework accomplishes no helpful work

while exchanging . so this paper illustrates to go

for stringing(threads) at whatever point conceived .

keywords:Process Control Block (PCB),Control

Processing Unit (CPU)

I. INTRODUCTION
What is process in operating system

?Process is a variables program in execution

including the current values the program counter,

registers and variables . the difference between a

process the programmers that the program is a

group of instructions where is the process is the

activity When a program is loaded into the memory

and it becomes a process , it can be divided into 4

section-stack ,text and data .

 Stack- the process that contains the temporary

data

 Heap – this is dynamically allocated memory

to a process

 Text-this includes the current activity

represented by the value of program counter

and contents of the processor register

 Data-this segment contains the all worldwide

and static factors

PROCESS MODEL TECHNIQUES :

PROCESSES :

The framework it is lot simple to consider

an assortment of cycles running in (pseudo) equal

at that point to attempt to monitor how the CPU

switch is from program to program

Types of process:

Predominately , there are three types of process

model

Multi programming

We have single mutual processor by all

program there is just one program counter all

projects in memory .in this program, counter is

introduced to execute the piece of a program A then

with the assistance of processwhich it move

Multiprocessing

Each with its own progression of control

and every when running freely of different ones

there is just a single actual program counter .So

when each process runs its legitimate program

counter is stacked into the genuine program counter

One program at one time :

At some random moment just one

processpursue and different processsome time

period in other perspective all cycles progress yet

just process really runs at given moment of time

PROCESS STATES :

 When all is said done , a process can have each of

the accompanying five states in turn

 Start – this is underlying state when a processis

first begun / made

 Ready – the processis waiting to be allotted to

a processor .prepared process are holding back

to have processor designated to them by the

workers framework with goal that they can run

process

 Running – after ready express, the processstate

is set to running and the processor executes its

guidance

 Waiting – process moves into the holding up

the state in the event that it needs to sit tight

for an assets for example : sitting tight for

client info , or trusting that a record will open

up

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 264-269 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209264269 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 265

 Terminated or exit : once the processcompletes

its execution , or it is ended by the working

framework it is moved to the ended state

where it is holds back to be taken out from

primary memory

PROCESS CONTROL BLOCK:

What is process control block ? It is the

information structure kept up by the working

framework for each processSome operating

systems keep up just PCB in that PCB has all the

passages put away by a process table The process

control block keeps all the data expected to monitor

a process

IMPLEMENATION OF PROCESSES:

Process model is actualized by process

table and process control block which keep track all

data of process.at the hour of formation of another

process working framework distributes a memory

for it stack a process code in the allotted memory

and arrangement information space for it The

condition of processis put away as new in its PCB

and when this process move to prepared express its

states is additionally changes PCB .at the point

when a running processneeds to hang tight for an

info yield gadgets its state is changed to hinderd

the different lines utilized as connected rundown

EVOLUTION OF PROCESS STATE MODEL:

 In the early working frameworks there

were no multi tasks, when a process execution was

begun, it utilized the processor until it was done

thus those frameworks didn't require any process

running state. In the recent working frameworks

that performs various tasks and cycles can execute

interleaved, any process in the course of its life

could have unique running states

Two-State Model:

 In this model, that is the essential model

in working frameworks, a process is in the

RUNNING state (Process currently executing) or

NOT RUNNING state (Process waiting for

execution). At the point when a process is first

made by the OS, it instates the program control

block for the process and the new process enters the

framework in Not-running state. After some time,

the right now running process will be hindered by

certain functions, and the OS will move the

presently running process from Running state to

Not-running state. The dispatcher at that point

chooses one process from Not-running cycles and

moves the process to the Running state for

execution

Fig.1 : State Transition

Three-State Model:

 There is one significant disadvantage of two

state measure model. At the point when dispatcher

brings another process from not-running state to

running state, the process may in any case be

hanging tight for some function or I/O demand.

Along these lines, the dispatcher must cross the line

and discover a not-running process that is prepared

for execution. It can corrupt execution . To defeat

this issue, we split the not-running state into two

states: Ready State and Waiting (Blocked) State.

Ready State: The process in the main memory

that is prepared for execution.

Waiting or Blocked State: The process in the main

memory that is hanging tight for some function.

The OS keeps up a different queue for

both Ready State and Waiting State. A process

moves from Waiting State to Ready State once the

function it's been sitting tight for finishes.

Fig.2:Three State Process Model Transition

Five-State Model:

 New : A process has been created but has not

yet been admitted to the pool of executable

processes.

 Ready : Processes that are prepared to run if

given an opportunity. That is, they are not

waiting on anything except the CPU

availability.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 264-269 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209264269 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 266

 Running: The process that is currently being

executed. (Assume single processor for

simplicity.)

 Logically, the 'Running' and 'Ready' states

are similar. In both cases the process is willing

to run, only in the case of 'Ready' state, there is

temporarily no CPU available for it.

 Blocked : A process that cannot execute until a

specified event such as an IO completion

occurs.

 Exit: A process that has been released by OS

either after normal termination or after

abnormal termination (error).

Fig.3:Five-State Process Model State Transition

Possible State Transitions are:

Null New: A new process is created to execute a

program.

New Ready: The OS will move a process from

the New state to the Ready state when it is prepared

to take on an additional process.

Ready Running: When it is time to select a

process to run, the OS chooses one of the processes

in the Ready state. This is the job of the scheduler

or dispatcher.

Running Exit: The currently running process is

terminated by the OS if the process indicates that it

has completed or if it aborts.

Running Ready: The most common reason for

this transition is that the running process has

reached the maximum allowable time for

uninterrupted Execution

Running Blocked: A process is put in the

Blocked state if it requests something for which it

must wait.

Blocked Ready: A process in the Blocked state

is moved to the Ready state when the event for

which it has been waiting occurs.

 Ready Exit: For clarity, this transition is not

shown on the state diagram. In some systems, a

parent may terminate a child process at any time.

Also, if a parent terminates, all child processes

associated with that parent may be terminated.

Blocked Exit: The comments under the

preceding item apply.

Six State Process Model:

There is one significant defect in the five-

state model. As we probably are aware, that the

processor is lot quicker than I/O gadgets.

Accordingly, a circumstance may happen where the

processor executes so quick that the entirety of the

cycles moves to waiting state and no process is in

ready state. The CPU sits inert until, at least one

process completes the I/O activity. This prompts

low CPU utilizationCPU would now be able to

acquire some different process in the primary

memory. There are two choices. First is to bring a

fresh new process and the subsequent choice is to

take another process from the suspended queue

back to the main memory. Bringing a process from

the suspended queue is mostly preferred.

Fig.4: Six State Process Model Transition

State Transitions:

Waiting -> Suspend: In this transition, if all the

processes are in waiting state the process is moved

from waiting state to suspended state by OS .

Suspend -> Ready: In this transition, where the

process is in the suspended state moves back to the

main memory for execution when there is sufficient

memory available.

Suspend -> Waiting: Here, the os which moves the

process from secondary memory to main memory

will be waiting for some event.

Seven State Process Model:

It is known as Five state process model with two

suspended states:

Blocked/Suspend : The process is in secondary

memory and awaiting an event.

Ready/Suspend : The process is in secondary

memory but is available for execution as soon as it

is loaded into main memory.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 264-269 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209264269 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 267

Fig.5 a.) With one suspended state

Fig.5b.) With two suspended state

State Transitions

Waiting -> Blocked/Suspend

Blocked/Suspend -> Waiting

Blocked/Suspend -> Ready/Suspend

Ready/Suspend -> Ready

 Ready-> Ready/Suspend

New -> Ready/Suspend

Fig.6:Seven State Process Model Transition

II. RESULT OBTAINED :
ISSUE:The disservice of context switching

The disadvantages of setting exchanging is that it

requires some an ideal opportunity for setting

exchanging for example the setting exchanging

time .

ARRANGEMENT : Threads

PROPOSED SOLUTION :

Following are some reasons why we use threads in

designing operating systems.

 A process with multiple threads make a great

server for example printer server.

 Because threads can share common data, they

do not need to use inter -process

communication.

 Because of the very nature, threads can take

advantage of multiprocessors.

 Threads are cheap in the sense that They only

need a stack and storage for registers therefore,

threads are cheap to create.

 Threads use very little resources of an

operating system in which they are working.

That is, threads do not need new address space,

global data, program code or operating system

resources.

 Context switching are fast when working with

threads. The reason is that we only have to

save and/or restore PC, SP and registers.

What are threads? the program is isolated

into various understandings utilizing strings . these

assignments give the hallucination of running equal

however are completed consistently . string has a

program counter , registers and stack . the program

counter has the data of the apparent multitude of

errands and the circumstance , registers , spare the

current working factors and stack stores the

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 264-269 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209264269 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 268

historical back drop of execution .From the

multiple points of view string work similarly as that

of process . a portion of the likeness and contrasts

are :

Similitudes :

Like process threads share CPU and just

one string dynamic (running) at a time .threads

inside a process execute successively . Similar to

measure , in the event that one string is impeded

another string can run .

Contrasts

In contrasts, threads are not independent

of one another . all threads can access every

address in the task . threads are designed to assist

one other . note that process might or might not

assist one another because process may originate

from different users

Following are some reasons why we use threads in

designing operating systems.

 A process with multiple threads make a great

server for example printer server.

 Because threads can share common data, they

do not need to use inter -process

communication.

 Because of the very nature, threads can take

advantage of multiprocessors.

 Threads are cheap in the sense thatThey only

need a stack and storage for registers therefore,

threads are cheap to create.

 Threads use very little resources of an

operating system in which they are working.

That is, threads do not need new address space,

global data, program code or operating system

resources.

 Context switching are fast when working with

threads. The reason is that we only have to

save and/or restore PC, SP and registers.

III. CONCLUSION:

A question you might ask is whether

processes or threads can run at the same time. The

answer is: it depends. On a system with multiple

processors or CPU cores (as is commonwith

modern processors), multiple processes or threads

can be executed in parallel. On asingle processor,

though, it is not possible to have processes or

threads truly executing atthe same time. In this

case, the CPU is shared among running processes

or threads using aprocess scheduling algorithm that

divides the CPU’s time and yields the illusion of

parallelexecution. The time given to each task is

called a ―time slice.‖ The switching back and

forthbetween tasks happens so fast it is usually not

perceptible. The terms parallelism (genuines i

multaneousexecution)

and concurrency (interleaving of processes in time

to give the appearance of simultaneous execution),

distinguish between the two types of real

orapproximate simultaneous operation.

IV. FUTURE SCOPE :
Today's operating systems are

conceptually upside-down. They developed the

hard way, gradually struggling upwards from the

machinery (processors, memory, disks and

displays) toward the user. In the future, operating

systems and information management tools will

grow top-down.

When we think of the future, we think of

the IoT, big data, AI, machine learning, additive

manufacturing, and robotics. We’re pushing

forward with these new technologies, but there’s

going to be a need for convergence.

If we want a future with autonomous

vehicles moving in harmony, drone deliveries, and

refrigerators that purchase milk when we run out,

then the systems we put in place need to

communicate and operate together efficiently.

Smart trash cans are also a perfect

example of one of the fears people have about this

type of automated future—the potential for lost

jobs and careers. Once trucks are automated, will

we need human drivers for trash removal? For

taxis?

Do we really want systems that are

perfectly automated, that don’t allow for any sort of

flexibility?

I’m not advocating for people to cheat the

system all the time, but we like being able to bend

rules and make exceptions. Is there a local store

that you visit every week where they know your

face? Well, imagine you go there next week but

forget your wallet. They’ll probably tell you,

―Don’t worry about it. Come back with the money

later.‖

REFERENCES:
[1]. Kartik Pandya, ―Network Structure or

Topology‖, International Journal of Advance

Research in Computer Science and

Management Studies, Volume 1, Issue

[2]. July 2013 2. Dhananjay M.DhamDhere,

―Operating Systems A Concept – Based

Approach‖, 3rdEdition, McGraw Hill

Education (India) Private Limited, New

Delhi, 2003

[3]. David P. Reed and Rajendra K. Kanodia.

Synchronization with eventcounts and

sequencers. Communications of the ACM,

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 264-269 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209264269 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 269

22(2), February 1979. Proposes different

synchronization mechanism.

[4]. K.A.Sumitradevi, N. P. Banashree,

―Operating Systems‖, second edition, SPD

publications.

[5]. Brian P. Crow, Jeong Geun Kim, Prescott T.

Sakai,‖ IEEE 802.11 Wireless Local Area

Networks‖, IEEE Communications

Magazine, September 1997.

[6]. William Stallings, ―Operating Systems:

Internals and Design Principles‖, seventh

Edition, Pearson Publications.

